Abstract

Cations such as Lewis acids have been shown to enhance the catalytic activity of high-valent Fe-oxygen intermediates. Herein, we present a pyridine diamine ethylene glycol macrocycle, which can form Zn(II)- or Fe(III)-complex with the NNN site, while allowing redox-inactive cations to bind to the ethylene glycol moiety. The addition of alkali, alkali earth, and lanthanum ions resulted in positive shifts to the Fe(III/II) redox potential. Calculation of dissociation constants showed the tightest binding with a Ba2+ ion. Density functional theory calculations were used to elucidate the effects of redox inactive cations toward the electronic structures of Fe complexes. Although the Fe-NNN complexes, both in the absence and presence of cations, can catalyze C-H oxidation of 9,10-dihydroanthracene, to give anthracene [hydrogen atom transfer (HAT) product], anthrone, and anthraquinone [oxygen atom transfer (OAT) products], highest overall activity and OAT/HAT product ratios were obtained in the presence of dications, that is, Ba2+ and Mg2+, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.