Abstract

The capability of N-phthaloylchitosan-grafted poly (ethylene glycol) methyl ether (mPEG)(PLC-g-mPEG) to enhance the aqueous solubility and stability of the lactone form of camptothecin (CPT) was investigated. PLC-g-mPEG formed a core-shell micellar structure after dialysis of the polymer solutions in dimethyl sulfoxide (DMSO) or dimethylformamide (DMF) against water, with a critical micelle concentration (CMC) of 28 μg/ml. CPT was loaded into the inner core of the micelles by dialysis method. The results showed an increase in the CPT-loading amount with an increasing concentration of CPT. The stability of drug-loaded micelles was studied by gel-permeation chromatography (GPC), and their in vitro release behaviors were analyzed. Release of CPT from the micelles was sustained. When compared to the unprotected CPT, CPT-loaded PLC-g-mPEG micelles were able to prevent the hydrolysis of the lactone group of the drug. The kinetics of the CPT hydrolysis in human serum albumin (HSA) and fetal bovine serum (FBS) were pseudo-first order. The hydrolysis rate constants for CPT and CPT-loaded PLC-g-mPEG micelles in phosphate-buffered saline (PBS) pH 7.4, were 7.4 × 10 −3 min −1 and 9.1 × 10 −3 h −1, parallel to an increase in half-life of CPT from 94 min to 76.15 h, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.