Abstract

We have reported that peroxisomal β-oxidation has an anabolic function, supplying acetyl-CoA for biosynthesis of bile acids and phospholipids. Here we deal with its role in the biosynthesis of the subclasses of ethanolamine- and choline-containing phosphoglycerides (EPG, CPG, respectively). Rats were fed for 2 weeks on chow containing 0.25% clofibrate, which inhibits cholesterol and bile acid biosyntheses, but stimulates peroxisomal β-oxidation. [1- 14C]Lignoceric acid, which is exclusively degraded by peroxisomal β-oxidation to acetyl-CoA, was intravenously injected, and 3 h later the rats were killed. The EPG-rich and CPG-rich fractions were prepared from the liver. When they were treated with phospholipase A 2, the radioactivity was predominantly recovered in the 1-radyl group. The radioactivity in EPG was easily dissociated with HCl vapor, and the lipid containing radioactivity was found to be a fatty aldehyde mixture consisting of steary aldehyde (approx. 58%) palmityl aldehyde (approx. 40%) and oleyl aldehyde (approx. 2%). Thus, in the case of EPG, acetyl-CoA from peroxisomal β-oxidation is incorporated mainly into the 1-alkenyl group of ethanolamine plasmalogen. The radioactivity in CPG, however, was found in fatty alcohol (formed from fatty acid), but not in alkylglycerol after reduction of the fraction with Vitride. Thus, in the case of CPG, acetyl-CoA from peroxisomal β-oxidation is exclusively incorporated into the 1-acyl group of diacyl glycerophosphocholine, but not into the 1-alkyl group. The above results were supported by the results of phospholipase C treatment. The above data indicate that peroxisomal β-oxidation plays a role in supplying acetyl-CoA for 1-alkenyl group of plasmalogen-type phospholipid, but this channel may open only to synthesis of EPG, and almost not to CPG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call