Abstract

1. Evidence is given for three sites of phosphorylation in the alpha-chains of the decarboxylase component of purified rat heart pyruvate dehydrogenase complex, analogous to those established for procine and bovine complexes. Inactivation of rat heart complex was correlated with phosphorylation of site 1. Relative initial rates of phosphorylation were site 1 greater than site 2 greater than site 3. 2. Methods are described for measurement of incorporation of 32Pi into the complex in rat heart mitochondria oxidizing 2-oxoglutarate + L-malate (total, sites 1, 2 and 3). Inactivation of the complex was related linearly to phosphorylation of site 1 in mitochondria of normal or diabetic rats. The relative initial rates of phosphorylation were site 1 greater than site 2 greater than site 3. Rates of site-2 and site-3 phosphorylation may have been closer to that of site 1 in mitochondria of diabetic rats than in mitochondria of normal rats. 3. The concentration of inactive (phosphorylated) complex was varied in mitochondria from normal rats by inhibiting the kinase reaction with pyruvate at concentrations ranging from 0.15 to 0.4 mM. The results showed that the concentration of inactive complex is related linearly to incorporation of 32Pi into site 1. Inhibition of 32Pi incorporations with pyruvate at all concentrations over this range was site 3 greater than site 2 greater than site 1. 4. With mitochondria from diabetic rats, pyruvate (0.15-0.4 mM) inhibited incorporation of 32Pi into site 3, but it had no effect on the concentration of inactive complex or on incorporations of 32Pi into site 1 or site 2. It is concluded that site-3 phosphorylation is not required for inactivation of the complex in rat heart mitochondria. 5. Evidence is given that phosphorylation of sites 2 and 3 may inhibit reactivation of the complex by dephosphorylation in rat heart mitochondria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call