Abstract

Ammonia-oxidizing archaea (AOA) have recently been proposed as potential players for ammonia removal in wastewater treatment plants (WWTPs). However, there is little evidence directly showing the contribution of AOA to ammonia oxidation in these engineered systems. In this study, DNA-stable isotope probing (DNA-SIP) with labeled 13C-HCO3- was introduced to sludge from a municipal WWTP. Quantitative PCR demonstrated that AOA amoA genes outnumbered AOB amoA genes in this WWTP sludge. AOA amoA gene sequence analysis revealed that AOA present in this WWTP were specific to one subcluster within the group 1.1b Thaumarchaeota. When ammonia was supplied to DNA-SIP incubation, the DNA-SIP profiles demonstrated the incorporation of the 13C into AOA and AOB. However, the 13C was not found to be assimilated into both microorganisms in the incubation without ammonia. Specific primers were designed to target amoA genes of AOA belonging to the subcluster found in this WWTP. Applying the primers to DNA-SIP experiment revealed that AOA of this subcluter most likely utilized inorganic carbon during ammonia oxidation under the studied conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.