Abstract

The incorporation of 1- 14C linoleic acid in several chromatin fractions of rat liver nuclei was investigated using two different procedures: (1) rat liver nuclei were incubated with ATP, CoASH, Mg ++ and 1- 14C linoleic acid. After 40 min at 37°C the chromatin obtained by sonication of nuclei suspended in 0.25 M sucrose was fractionated by differential sedimentation; (2) chromatin fractions obtained by differential sedimentation were incubated separately with ATP, CoASH, Mg ++ and 1- 14C linoleic acid 40 min at 37°C in order to characterize the fatty acid incorporation in isolated chromatin. A comparative study of the incorporation of 1- 14C linoleic acid in microsomes and nuclei isolated from rat liver is also presented for the purpose of comparison. Linoleic acid was incorporated into nuclear lipids as well as in chromatin fractions. The fatty acid incorporation was stimulated considerably in the acylation system when compared to control, it appears to be highly dependent on the state of condensation of chromatin, being barely detectable in the lowest density fraction. The major proportion of 1- 14C linoleic acid was found in phospholipids and in a lesser proportion it remained esterified to triglycerides and cholesteryl esters. The distribution of radioactivity in different classes of phospholipids present in microsomes and nuclei isolated from rat liver, showed a similar profile of distribution. The major proportion of radioactivity, approximately 50% was found in phosphatidylcholine and in a lesser proportion in sphingomyelin, phosphatidylserine and phosphatidylethanolamine. When chromatin fractions were incubated separately, it was observed that the major proportion of 1- 14C linoleic acid in phospholipids was found in heavy chromatin fractions whereas low density chromatin fraction only incorporated in a lesser proportion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.