Abstract

Low-temperature (∼200 °C) molecular beam epitaxy of Ge1−xCx alloys grown on Si(100) have been extensively investigated by in situ reflection high-energy electron diffraction, ex situ x-ray diffraction, transmission electron microscopy, and Raman spectroscopy. Carbon concentrations were nominally varied from 0 up to ∼10 at. %. Selected samples were annealed in an Ar ambient at 750 °C to evaluate the stability of the thin films. A few films were also grown on Ge substrates. With increasing C concentration, the epitaxial growth mode changes from two dimensional layer growth to three dimensional island growth. The surface has a tendency to facet along {311} planes under certain growth conditions. The microstructure shows an increase in planar defect density with increasing C concentration. The x-ray diffraction data show that the lattice parameter decreases with increasing C concentration and that a maximum of 1 at. % C is incorporated substitutionally in Ge. Raman spectroscopy shows no clear Ge–C signal though extra intensity is measured at the energies where Ge–C modes may be expected. Films with nominal C concentrations greater than 2 to 3 at. % show clear evidence for amorphous C. We propose that under our growth conditions, nominal C in excess of about 2 to 3 at. % remains on the surface as amorphous C and plays an important role in 3D islanding, defect formation, and {311} faceting during epitaxial growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.