Abstract

Highly automated driving systems are required to make robust decisions in many complex driving environments, such as urban intersections with high traffic. In order to make as informed and safe decisions as possible, it is necessary for the system to be able to predict the future maneuvers and positions of other traffic agents, as well as to provide information about the uncertainty in the prediction to the decision making module. While Bayesian approaches are a natural way of modeling uncertainty, recently deep learning-based methods have emerged to address this need as well. However, balancing the computational and system complexity, while also taking into account agent interactions and uncertainties, remains a difficult task. The work presented in this paper proposes a method of producing predictions of other traffic agents' trajectories in intersections with a singular Deep Learning module, while incorporating uncertainty and the interactions between traffic participants. The accuracy of the generated predictions is tested on a simulated intersection with a high level of interaction between agents, and different methods of incorporating uncertainty are compared. Preliminary results show that the CVAE-based method produces qualitatively and quantitatively better measurements of uncertainty and manage to more accurately assign probability to the future occupied space of traffic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.