Abstract

Interictal epileptiform discharges (IEDs) are elicited from an epileptic brain, whereas they can also be due to other neurological abnormalities. The diversity in their morphologies, their strengths, and their sources within the brain cause a great deal of uncertainty in their labeling by clinicians. The aim of this study is therefore to exploit and incorporate this uncertainty (the probability of the waveform being an IED) in the IED detection system which combines spatial component analysis (SCA) with the IED probabilities referred to as SCA-IEDP-based method. For comparison, we also propose and study SCA-based method in which probability of the waveform being an IED is ignored. The proposed models are employed to detect IEDs in two different classification approaches: (1) subject-dependent and (2) subject-independent classification approaches. The proposed methods are compared with two other state-of-the-art methods namely, time-frequency features and tensor factorization methods. The proposed SCA-IEDP model has achieved superior performance in comparison with the traditional SCA and other competing methods. It achieved 79.9% and 63.4% accuracy values in subject-dependent and subject-independent classification approaches, respectively. This shows that considering the IED probabilities in designing an IED detection system can boost its performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.