Abstract
Stable isotopes are a powerful tool for ecologists, often used to assess contributions of different sources to a mixture (e.g. prey to a consumer). Mixing models use stable isotope data to estimate the contribution of sources to a mixture. Uncertainty associated with mixing models is often substantial, but has not yet been fully incorporated in models. We developed a Bayesian-mixing model that estimates probability distributions of source contributions to a mixture while explicitly accounting for uncertainty associated with multiple sources, fractionation and isotope signatures. This model also allows for optional incorporation of informative prior information in analyses. We demonstrate our model using a predator-prey case study. Accounting for uncertainty in mixing model inputs can change the variability, magnitude and rank order of estimates of prey (source) contributions to the predator (mixture). Isotope mixing models need to fully account for uncertainty in order to accurately estimate source contributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.