Abstract

IntroductionMutations in BRCA1 and BRCA2 confer high risks of breast cancer and ovarian cancer. The risk prediction algorithm BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) may be used to compute the probabilities of carrying mutations in BRCA1 and BRCA2 and help to target mutation screening. Tumours from BRCA1 and BRCA2 mutation carriers display distinctive pathological features that could be used to better discriminate between BRCA1 mutation carriers, BRCA2 mutation carriers and noncarriers. In particular, oestrogen receptor (ER)-negative status, triple-negative (TN) status, and expression of basal markers are predictive of BRCA1 mutation carrier status.MethodsWe extended BOADICEA by treating breast cancer subtypes as distinct disease end points. Age-specific expression of phenotypic markers in a series of tumours from 182 BRCA1 mutation carriers, 62 BRCA2 mutation carriers and 109 controls from the Breast Cancer Linkage Consortium, and over 300,000 tumours from the general population obtained from the Surveillance Epidemiology, and End Results database, were used to calculate age-specific and genotype-specific incidences of each disease end point. The probability that an individual carries a BRCA1 or BRCA2 mutation given their family history and tumour marker status of family members was computed in sample pedigrees.ResultsThe cumulative risk of ER-negative breast cancer by age 70 for BRCA1 mutation carriers was estimated to be 55% and the risk of ER-positive disease was 18%. The corresponding risks for BRCA2 mutation carriers were 21% and 44% for ER-negative and ER-positive disease, respectively. The predicted BRCA1 carrier probabilities among ER-positive breast cancer cases were less than 1% at all ages. For women diagnosed with breast cancer below age 50 years, these probabilities rose to more than 5% in ER-negative breast cancer, 7% in TN disease and 24% in TN breast cancer expressing both CK5/6 and CK14 cytokeratins. Large differences in mutation probabilities were observed by combining ER status and other informative markers with family history.ConclusionsThis approach combines both full pedigree and tumour subtype data to predict BRCA1/2 carrier probabilities. Prediction of BRCA1/2 carrier status, and hence selection of women for mutation screening, may be substantially improved by combining tumour pathology with family history of cancer.

Highlights

  • Mutations in BRCA1 and BRCA2 confer high risks of breast cancer and ovarian cancer

  • We previously developed a risk-prediction algorithm for familial breast cancer and ovarian cancer - the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) - which can be used to compute the probabilities of carrying BRCA1 and BRCA2 mutations and the probabilities of developing breast cancer or ovarian cancer in the future [23]

  • Data from the Breast Cancer Linkage Consortium (BCLC) [10]. aAs numbers were sparse, data were extrapolated from the nearest age group for BRCA1 carriers in updating the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm, and population data were substituted for BCLC data for BRCA2 carriers

Read more

Summary

Introduction

Mutations in BRCA1 and BRCA2 confer high risks of breast cancer and ovarian cancer. The risk prediction algorithm BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) may be used to compute the probabilities of carrying mutations in BRCA1 and BRCA2 and help to target mutation screening. As genetic testing is expensive and may be associated with adverse psychological effects for Several models have been developed for predicting risk of carrying BRCA1 or BRCA2 mutation and subsequently developing breast cancer [7]. These models generally include information on occurrence and age of diagnosis of breast cancer and other cancers in individuals and their families [7]. Tumours in the proband or family members into risk-prediction algorithms may result in improved discrimination between BRCA1 mutation carriers, BRCA2 mutation carriers and nonmutation carriers, and provide a more accurate basis for identifying those individuals that may benefit from genetic testing. These factors included progesterone receptor, human epidermal growth factor receptor 2 (HER2), mitotic count, lymphocyte infiltration, and continuous pushing margins [10]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.