Abstract

AbstractMetal‐organic frameworks (MOFs) have been shown to be an excellent platform in photocatalysis. However, to suppress electron–hole recombination, a Pt cocatalyst is usually inevitable, especially in photocatalytic H2 production, which greatly limits practical application. Herein, for the first time, monodisperse, small‐size, and noble‐metal‐free transitional‐metal phosphides (TMPs; for example, Ni2P, Ni12P5), are incorporated into a representative MOF, UiO‐66‐NH2, for photocatalytic H2 production. Compared with the parent MOF and their physical mixture, both TMPs@MOF composites display significantly improved H2 production rates. Thermodynamic and kinetic studies reveal that TMPs, behaving similar ability to Pt, greatly accelerate the linker‐to‐cluster charge transfer, promote charge separation, and reduce the activation energy of H2 production. Significantly, the results indicate that Pt is thermodynamically favorable, yet Ni2P is kinetically preferred for H2 production, accounting for the higher activity of Ni2P@UiO‐66‐NH2 than Pt@UiO‐66‐NH2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.