Abstract

ObjectivesTranscatheter mitral valve prostheses are designed to capture the anterior leaflet and surgical techniques designed to fully preserve the subvalvular apparatus at prosthetic valve insertion both serve to shorten the anterior mitral leaflet height, thus effectively incorporating it into the anterior annulus. This study quantifies the acute effects of incorporating the anterior mitral leaflet into the annulus on left ventricular function. MethodsFourteen adult sheep (weight, 48.7 ± 6.2 kg) underwent a mechanical mitral valve insertion on normothermic beating-heart cardiopulmonary bypass, with full retention of the native mitral valve but with placement of exteriorized releasable snares around the anterior mitral leaflet. Continuous measurements of left ventricular mechano-energetics were recorded throughout, alternating incorporating and releasing of the anterior mitral leaflet to the mitral annulus. Echocardiography confirmed the incorporation into the annulus and release. ResultsThe independent indices of left ventricular contractility (ie, end systolic pressure volume relationship and preload recruitable stroke work) were both significantly impaired when the anterior mitral leaflet was incorporated to the annulus and restored after release, as were the hemodynamic parameters: cardiac output, stroke volume, stroke work, and left ventricular pressure decreased by 15%, 17%, 23%, and 11%, respectively. Echocardiography demonstrated increased sphericity of the left ventricle during anterior mitral leaflet incorporation. ConclusionsIncorporating the anterior mitral leaflet to the anterior annulus adversely affected left ventricular contractility, caused distortion of the left ventricle in the form of increased sphericity, and impaired hemodynamic parameters in normal ovine hearts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.