Abstract

Tree-structured survival methods empirically identify a series of covariate-based binary split points, resulting in an algorithm that can be used to classify new patients into risk groups and subsequently guide clinical treatment decisions. Traditionally, only fixed-time (e.g. baseline) values are used in tree-structured models. However, this manuscript considers the scenario where temporal features of a repeated measures polynomial model, such as the slope and/or curvature, are useful for distinguishing risk groups to predict future outcomes. Both fixed- and random-effects methods for estimating individual temporal features are discussed, and methods for including these features in a tree model and classifying new cases are proposed. A simulation study is performed to empirically compare the predictive accuracies of the proposed methods in a wide variety of model settings. For illustration, a tree-structured survival model incorporating the linear rate of change of depressive symptomatology during the first four weeks of treatment for late-life depression is used to identify subgroups of older adults who may benefit from an early change in treatment strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.