Abstract

Polymeric microneedles (MNs) are widely used for sustained drug release due to their distinct advantages over other types of MNs. Poly-ε-caprolactone (PCL) stands out as a biodegradable and biocompatible hydrophobic polymer commonly employed in drug delivery applications. This study explores the impact of surfactants on the encapsulation and release rate of a model hydrophilic drug, minoxidil (MXD), from PCL MNs. Three nonionic surfactants, Tween 80, Span 60, and polyethylene glycol (PEG), were integrated into PCL MNs at varying concentrations. Compared to the other types of surfactants, PEG-containing PCL MNs exhibit enhanced insertion capabilities into a skin-simulant parafilm model and increased mechanical strength, suggesting facile penetration into the stratum corneum. Furthermore, MXD-PEG MNs show the highest encapsulation efficiency and are further characterized using FTIR, DSC and XRD. Their mechanical strength against different static forces was measured. The MNs exhibit a sustained release pattern over 20 days. Eventually, MXD-PEG MNs were subjected to penetration testing using chicken skin and required minimal insertion forces with no observed MN failure during experimentation even after compression with the maximum force applied (32 N per patch). Taken together, the present work demonstrates the feasibility of incorporating nonionic surfactants like PEG into the tips of hydrophobic PCL MNs for sustained delivery of a model hydrophilic drug. This formulation strategy can be used to improve patient compliance by allowing self-administration and achieving prolonged drug release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call