Abstract

Activity-travel scheduling is at the core of many activity-based models that predict short-term effects of travel information systems and travel demand management. Multi-state supernetworks have been advanced to represent in an integral fashion the multi-dimensional nature of activity-travel scheduling processes. To date, however, the treatment of time in the supernetworks has been rather limited. This paper attempts to (i) dramatically improve the temporal dimension in multi-state supernetworks by embedding space–time constraints into location selection models, not only operating between consecutive pairs of locations, but also at the overall schedule at large, and (ii) systematically incorporate time in the disutility profiles of activity participation and parking. These two improvements make the multi-state supernetworks fully time-dependent, allowing modeling choice of mode, route, parking and activity locations in a unified and time-dependent manner and more accurately capturing interdependences of the activity-travel trip chaining. To account for this generalized representation, refined behavioral assumptions and dominance relationships are proposed based on an earlier proposed bicriteria label-correcting algorithm to find the optimal activity-travel pattern. Examples are shown to demonstrate the feasibility of this new approach and its potential applicability to large scale agent-based simulation systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.