Abstract

AbstractEasy‐to‐form tin vacancies at the buried interface of tin‐lead perovskites hinder the performance of low‐bandgap perovskite solar cells (PSCs). Here, a synergistic strategy by incorporating potassium citrate (PC) into the poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hole‐transport layer to passivate the buried interface of Sn‐Pb PSCs is reported. PC neutralizes the acidity of PEDOT:PSS and stabilizes the perovskite front surface, enhancing device stability. Citrate moieties coordinate with Sn2+ on the buried perovskite surface, preventing Sn2+ oxidation and suppressing defect formation. Additionally, potassium cations incorporate into Sn‐Pb perovskites, enhancing crystallinity and passivating halide defects. The combined benefits enable efficient low‐bandgap Sn‐Pb PSCs with a power conversion efficiency of 22.7% and a high open‐circuit voltage of 0.894 V. Using this method, 26.1% efficiency for all‐perovskite tandem solar cells is demonstrated. These results emphasize the significance of buried interface passivation in developing efficient and stable Sn‐Pb PSCs and all‐perovskite tandem solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.