Abstract

Increased nurse-to-patient ratios are associated negatively with increased costs and positively with improved patient care and reduced nurse burnout rates. Thus, it is critical from a cost, patient safety, and nurse satisfaction perspective that nurses be utilized efficiently and effectively. To address this, we propose a stochastic programming formulation for nurse staffing that accounts for variability in the patient census and nurse absenteeism, day-to-day correlations among the patient census levels, and costs associated with three different classes of nursing personnel: unit, pool, and temporary nurses. The decisions to be made include: how many unit nurses to employ, how large a pool of cross-trained nurses to maintain, how to allocate the pool nurses on a daily basis, and how many temporary nurses to utilize daily. A genetic algorithm is developed to solve the resulting model. Preliminary results using data from a large university hospital suggest that the proposed model can save a four-unit pool hundreds of thousands of dollars annually as opposed to the crude heuristics the hospital currently employs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.