Abstract

Neural network potentials (NNPs) offer significant promise to bridge the gap between the accuracy of quantum mechanics and the efficiency of molecular mechanics in molecular simulation. Most NNPs rely on the locality assumption that ensures the model's transferability and scalability and thus lack the treatment of long-range interactions, which are essential for molecular systems in the condensed phase. Here we present an integrated hybrid model, AMOEBA+NN, which combines the AMOEBA potential for the short- and long-range noncovalent atomic interactions and an NNP to capture the remaining local covalent contributions. The AMOEBA+NN model was trained on the conformational energy of the ANI-1x data set and tested on several external data sets ranging from small molecules to tetrapeptides. The hybrid model demonstrated substantial improvements over the baseline models in term of accuracy as the molecule size increased, suggesting its potential as a next-generation approach for chemically accurate molecular simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.