Abstract

The growing demand for lightweight and flexible supercapacitor devices necessitates innovation in electrode materials and electrode configuration. We have developed a new type of three-dimensional (3D) flexible nanohybrid electrode by incorporating nanoporous polyaniline (PANI) into layer-by-layer ionic liquid (IL) functionalized carbon nanotube (CNT)–graphene paper (GP), and explored its practical application as a freestanding flexible electrode in a supercapacitor. Our results have demonstrated that the surface modification of graphene nanosheets and CNTs by hydrophilic IL molecules makes graphene and CNTs well-dispersed in aqueous solution, and also improves the hydrophility of the assembled graphene-based paper. Furthermore, the integration of highly conductive one-dimensional (1D) CNTs with two-dimensional (2D) graphene nanosheets leads to 3D sandwich-structured nanohybrid paper with abundant interconnected pores, which is preferred for fast mass and electron transport kinetics. For in situ electropolymerization of PANI on paper electrodes, the IL functionalized CNT–GP (IL–CNT–GP) offers large surface area and interlayer spacing and the unique π surface of graphene and CNTs for efficient and stable loading of PANI. A key finding is that the structural integration of multiple components in this 3D freestanding flexible sheet electrode gives rise to a synergic effect, leading to a high capacitance of 725.6 F g−1 at a current density of 1 A g−1 and good cycling stability by retaining 90% of the initial specific capacitance after 5000 cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call