Abstract
Recently, Gandomi and Alavi proposed a robust meta-heuristic optimization algorithm, called Krill Herd (KH), for global optimization. To improve the performance of the KH algorithm, harmony search (HS) is applied to mutate between krill during the process of krill updating instead of physical diffusion used in KH. A novel hybrid meta-heuristic optimization approach HS/KH is proposed to solve global numerical optimization problem. HS/KH combines the exploration of harmony search (HS) with the exploitation of KH effectively, and hence, it can generate the promising candidate solutions. The detailed implementation procedure for this improved meta-heuristic method is also described. Fourteen standard benchmark functions are applied to verify the effects of these improvements, and it is demonstrated that, in most cases, the performance of this hybrid meta-heuristic method (HS/KH) is superior to, or at least highly competitive with, the standard KH and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, HS, KH, PSO, and SGA. The effect of the HS/FA parameters is also analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.