Abstract

In deep ultraviolet lithography simulations, conventional application of Kirchhoff's boundary conditions on the mask surface provides the so-called "thin-mask" approximation of the object field. Current subwavelength lithographic operation, however, places a serious limitation on this approximation, which fails to account for the topographical, or "thick-mask," effects. In this paper, a new simulation model is proposed that is theoretically founded on the well-established physical theory of diffraction. This model relies on the key result that diffraction effects can be interpreted as an intrinsic edge property, and modeled with just two fixed parameters: width and transmission coefficient of a locally determined boundary layer applied to each chrome edge. The proposed model accurately accounts for thick-mask effects of the fields on the mask, greatly improving the accuracy of aerial image simulations in photolithography, while maintaining a reasonable computational cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.