Abstract

Factor mixture modeling (FMM) has been widely adopted in health and behavioral sciences to examine unobserved population heterogeneity. Covariates are often included in FMM as predictors of the latent class membership via multinomial logistic regression to help understand the formation and characterization of population heterogeneity. However, interaction effects among covariates have received considerably less attention, which might be attributable to the fact that interaction effects cannot be identified in a straightforward fashion. This study demonstrated the utility of structural equation model or SEM trees as an exploratory method to automatically search for covariate interactions that might explain heterogeneity in FMM. That is, following FMM analyses, SEM trees are conducted to identify covariate interactions. Next, latent class membership is regressed on the covariate interactions as well as all main effects of covariates. This approach was demonstrated using the Traumatic Brain Injury Model System National Database.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.