Abstract

Satellite-based aerosol optical depth (AOD) is now comprehensively applied to estimate ground-level concentrations of fine particulate matter (PM2.5). This study aimed to construct the AOD-PM2.5 estimation models over Taiwan. The AOD-PM2.5 modeling in Taiwan island is challenging owing to heterogeneous land use, complex topography, and humid tropical to subtropical climate conditions with frequent cloud cover and prolonged rainy season. The AOD retrievals from the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites were combined with the meteorological variables from reanalysis data and high resolution localized land use variables to estimate PM2.5 over Taiwan island from 2005 to 2015. Ten-fold cross validation was carried out and the residuals of the estimation model at various locations and seasons are assessed. The cross validation (CV) R2 based on monitoring stations were 0.66 and 0.66, with CV root mean square errors of 14.0μg/m3 (34%) and 12.9μg/m3 (33%), respectively, for models based on Terra and Aqua AOD. The results provided PM2.5 estimations at locations without surface stations. The estimation revealed PM2.5 concentration hotspots in the central and southern part of the western plain areas, particularly in winter and spring. The annual average of estimated PM2.5 concentrations over Taiwan consistently declined during 2005-2015. The AOD-PM2.5 model is a reliable and validated method for estimating PM2.5 concentrations at locations without monitoring stations in Taiwan, which is crucial for epidemiological study and for the assessment of air quality control policy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.