Abstract

Purpose: Leaf transmission and head scatter are two important factors that influence intensity-modulated radiation therapy (IMRT) delivery and should be correctly taken into account when generating multileaf collimator (MLC) sequences. Significant discrepancies between the desired and delivered intensity profiles could otherwise result. The purpose of this article is to propose a reliable algorithm to minimize the dosimetric effects caused by the two factors in step-and-shoot mode. Methods and materials: The goal of the algorithm is to minimize the difference between the desired fluence map and the fluence map actually delivered. For this purpose, an error function, defined as the least-square difference between the desired and the delivered fluence maps, is introduced. The effects of transmission and head scatter are minimized by adjusting the fractional monitor units (MUs) in the initial MLC sequences, created by using the desired fluence map without inclusion of the contributions from the two factors. Computationally, a downhill simplex optimization method is used to minimize the error function with respect to the fractional MUs. A three-source model is used to evaluate the relative head scatter distribution for each segment at the beginning of the calculation. The algorithm has been assessed by comparing the dose distributions delivered by the corrected leaf sequence files and the theoretic predication, calculated by Monte Carlo simulation using the desired fluence maps, for an intuitive test field and several clinical IMRT cases. Results: The deviations between the desired fluence maps and those calculated using the corrected leaf sequence files are <0.3% of the maximum MU for the test field and <1.0% for the clinical IMRT cases. The experimental data show that both absolute and relative dose distributions delivered by the corrected leaf sequences agree with the desired ones within 2.5% of the maximum dose or 2 mm in high-dose gradient regions. Compared with the results obtained by using the leaf sequences in which only the transmission or none of the two effects is corrected, significant improvements in the fluence and dose distributions have been observed. Conclusions: Transmission and head scatter play important roles in the dosimetric behavior of IMRT delivery. A larger error may result if only one factor is considered because of the opposite effects of the two factors. We noted that the influence of the two effects is more pronounced in absolute dose than in the relative dose. The algorithm proposed in this work accurately corrects for these two effects in step-and-shoot delivery and provides a reliable tool for clinical IMRT application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.