Abstract
This paper investigates the problem of augmenting labeled data with unlabeled data to improve classification accuracy. This is significant for many applications such as image classification where obtaining classification labels is expensive, while large unlabeled examples are easily available. We investigate an Expectation Maximization (EM) algorithm for learning from labeled and unlabeled data. The reason why unlabeled data boosts learning accuracy is because it provides the information about the joint probability distribution. A theoretical argument shows that the more unlabeled examples are combined in learning, the more accurate the result. We then introduce B-EM algorithm, based on the combination of EM with bootstrap method, to exploit the large unlabeled data while avoiding prohibitive I/O cost. Experimental results over both synthetic and real data sets show that the proposed approach has a satisfactory performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.