Abstract

Knowledge representation learning aims at modeling knowledge graph by encoding entities and relations into a low dimensional space. Most of the traditional works for knowledge embedding need negative sampling to minimize a margin-based ranking loss. However, those works construct negative samples through a random mode, by which the samples are often too trivial to fit the model efficiently. In this paper, we propose a novel knowledge representation learning framework based on Generative Adversarial Networks (GAN). In this GAN-based framework, we take advantage of a generator to obtain high-quality negative samples. Meanwhile, the discriminator in GAN learns the embeddings of the entities and relations in knowledge graph. Thus, we can incorporate the proposed GAN-based framework into various traditional models to improve the ability of knowledge representation learning. Experimental results show that our proposed GAN-based framework outperforms baselines on triplets classification and link prediction tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.