Abstract
ABSTRACT Generative language models have changed the way we interact with computers using natural language. With the release of increasingly advanced GPT models, systems are able to correctly respond to questions in various domains. However, they still have important limitations, such as hallucinations, lack of substance in answers, inability to justify responses, or showing high confidence with fabricated content. In digital mental health, every decision must be traceable and based on scientific evidence and these shortcomings are hindering the integration of LLMs into clinical practice. In this paper, we provide a novel automated method to develop evidence-based question answering systems. Powerful state-of-the-art generalist language models are used and forced to employ only contents in validated clinical guidelines, tracking the source of the evidence for each generated response. This way, the system is able to protect users from hallucinatory responses. As a proof of concept, we present the results obtained building question-answering systems circumscribed to the clinical practice guidelines of the Spanish National Health System about the management of depression and attention deficit hyperactivity disorder. The coherence, veracity, and evidence supporting the responses have been evaluated by human experts obtaining high reliability, clarity, completeness, and traceability of evidence results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.