Abstract

One of the most challenging issues in fisheries management is the evaluation of the effects of fishing in the context of a changing environment. Using the pronghorn spiny lobster ( Panulirus penicillatus ) fishery off the eastern coast of Taiwan as an example, we developed an individual-based model (IBM) that is capable of describing the temperature-dependent life history processes and fishery practices for the spiny lobster. We then used the model to evaluate potential impacts of increased ocean temperature on the estimation of mortality-based biological reference points for fisheries management. We demonstrate that a warming temperature would increase the yield-per-recruit and eggs-per-recruit values and consequently reduce the risk of overexploitation under the current exploitation level. However, there is likely a high risk of overexploitation in the long term if higher temperatures induce extra-high natural mortality. The evaluation of effectiveness of size regulations suggests that increasing minimum legal size is proposed as a good candidate measure to reduce the risk of overexploitation for pessimistically unfavorable environmental conditions. This study suggests that an explicit incorporation of the relationships between environmental variables and biological processes can greatly improve fisheries assessment and management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.