Abstract

We examined the impact climate change (CC) will have on the availability of climatically suitable habitat for three native and one exotic riparian species. Due to its increasing prevalence in arid regions throughout the western US, we predicted that an exotic species, Tamarix, would have the greatest increase in suitable habitat relative to native counterparts under CC. We used an ecological niche model to predict range shifts of Populus fremontii, Salix gooddingii, Salix exigua and Tamarix, from present day to 2080s, under five general circulation models and one climate change scenario (A1B). Four major findings emerged. 1) Contrary to our original hypothesis, P. fremontii is projected to have the greatest increase in suitable habitat under CC, followed closely by Tamarix. 2) Of the native species, S. gooddingii and S. exigua showed the greatest loss in predicted suitable habitat due to CC. 3) Nearly 80 percent of future P. fremontii and Salix habitat is predicted to be affected by either CC or Tamarix by the 2080s. 4) By the 2080s, 20 percent of S. gooddingii habitat is projected to be affected by both Tamarix and CC concurrently, followed by S. exigua (19 percent) and P. fremontii (13 percent). In summary, while climate change alone will negatively impact both native willow species, Tamarix is likely to affect a larger portion of all three native species' distributions. We discuss these and other results in the context of prioritizing restoration and conservation efforts to optimize future productivity and biodiversity. As we are accounting for only direct effects of CC and Tamarix on native habitat, we present a possible hierarchy of effects- from the direct to the indirect- and discuss the potential for the indirect to outweigh the direct effects. Our results highlight the need to account for simultaneous challenges in the face of CC.

Highlights

  • Climate change (CC) is predicted to be one of the leading causal agents of future extinctions, impacting biodiversity and ecosystem functioning worldwide [1], [2]

  • A total of 5,758 points were removed in the above process resulting in 739 points for P. fremontii, 893 for S. gooddingii, 2,092 for S. exigua and 1,309 for Tamarix that cover their geographic ranges in western North America

  • For all three native species and Tamarix temperature variables had the greatest contribution to the models, as quantified by permutation importance, with the largest effect for P. fremontii, Tamarix and S. exigua (Table 1)

Read more

Summary

Introduction

Climate change (CC) is predicted to be one of the leading causal agents of future extinctions, impacting biodiversity and ecosystem functioning worldwide [1], [2]. In the western U.S, recent climatic conditions have become more arid [12]; resulting in high mortality of numerous foundation species at the trailing edge of their distributions, in ecosystems that span from chaparral to alpine forests [10], [13]. Projected increases in temperature and drought will negatively impact riparian ecosystems worldwide that have already experienced extensive modifications over the last century [16,17,18]. Because riparian tree fitness is influenced by a number of different processes (e.g., temperature, soil water availability, flooding regimes), CC will impact riparian species directly by altering growth, phenology and geographic distributions, and indirectly by altering flood regimes, such as the timing of spring runoff and the magnitude of floods (reviewed in [23])

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call