Abstract

Decision diagrams have been successfully used to help solve several classes of discrete optimization problems. We explore an approach to incorporate them into integer programming solvers, motivated by the wide adoption of integer programming technology in practice. The main challenge is to map generic integer programming models to a recursive structure that is suitable for decision diagram compilation. We propose a framework that opportunistically constructs decision diagrams for suitable substructures, if present. In particular, we explore the use of a prevalent substructure in integer programming solvers known as the conflict graph, which we show to be amenable to decision diagrams. We use Lagrangian relaxation and constraint propagation to consider constraints that are not represented directly by the substructure. We use the decision diagrams to generate dual and primal bounds to improve the pruning process of the branch-and-bound tree of the solver. Computational results on the independent set problem with side constraints indicate that our approach can provide substantial speedups when conflict graphs are present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.