Abstract
Vapor phase infiltration (VPI) derived from atomic layer deposition (ALD) enables inorganic materials to nucleate and grow within the free volume of polymers, which has shown promising prospects in the field of composite solid polymer electrolytes (CSPEs). However, there are only a few types of metal oxides that can be incorporated into the polymer matrix by VPI, let alone binary metal oxides, due to the limited knowledge of the VPI synthesis process. To combine the merits of different metal oxides, we investigate the VPI method to prepare ZnO-Al2O3 composites in poly(ethylene oxide) (PEO). When the introducing order is Al2O3/ZnO (AZO), due to the extremely high reactivity of trimethyl aluminum (TMA) with PEO, VPI-Al2O3 will accumulate near the surface of PEO. The surface Al2O3 layer inhibits the further diffusion of the diethyl zinc (DEZ) into the PEO matrix, leading to weak polymer-filler interactions and limited improvement of the Li+ conduction. In the incorporation order of ZnO/Al2O3 (ZAO), the moderate reactivity of DEZ renders the uniform distribution of VPI-ZnO within PEO, and the following TMA can both react with PEO and VPI-ZnO particles near the surface of PEO, which not only preserves the interactions between VPI-ZnO and PEO but also better inhibits the growth of lithium dendrites. The incorporation order plays a crucial role in the morphology and composition of binary metal oxides synthesized by VPI.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.