Abstract

In this paper, the three-dimensional thermal effects of a clinically-extracted vascular tissue undergoing cryo-freezing are numerically investigated. Based on the measured experimental temperature field, the numerical results of the Pennes bioheat model combined with the boundary condition-enforced immersed boundary method (IBM) agreed well with experimental data with a maximum temperature discrepancy of 2.9°C. For simulating the temperature profile of a tumor sited in a dominantly vascularized tissue, our model is able to capture with ease the thermal effects at specified junctions of the blood vessels. The vascular complexity and the ice-ball shape irregularity which cannot be easily quantified via clinical experiments are also analyzed and compared for both two-dimensional and three-dimensional settings with different vessel configurations and developments. For the three-dimensional numerical simulations, a n-furcated liver vessels model from a three-dimensional segmented volume using hole-making and subdivision methods is applied. A specific study revealed that the structure and complexity of the vascular network can markedly affect the tissue's freezing configuration with increasing ice-ball irregularity for greater blood vessel complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.