Abstract
The paper presents an approach to incorporating the aging failure mode and multiple capacity states of a HVDC system in power system reliability assessment. Subcomponents in HVDC converter stations have a much shorter mean life compared to an ac line or cable. When their age approaches the mean life, the failure rate due to aging increases greatly and it is necessary to include their aging failure mode in the assessment. The modeling method presented for multiple capacity states includes three reliability block networks. Probabilities of a HVDC system being at the full, derated and zero capacities can be easily calculated using the three reliability networks. Once the state probabilities are obtained, the HVDC system can be represented using a three-state model in overall power system reliability evaluation. An actual example in a utility is given to demonstrate the application of the presented approach in a power supply system with an aged HVDC link.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.