Abstract

Abstract The sequential using of topology optimization and AM (additive manufacturing) can generate and fabricate superior-performance yet lightweight magneto-structural components. In this paper, a magneto-structural topology optimization method is proposed considering AM constraints to improve the design manufacturability of optimized designs. The design problem is formulated with the weighted combination of magnetic compliance and mechanical compliance as a single objective subjected to two types of manufacturing constraints and the volume fraction constraint. Two important AM constraints are in a sequential manner incorporated into the topology optimization model, in which the overhang angle constraint is followed by the maximum length scale constraint. Corresponding sensitivities of the objective and constraints are derived, and the optimization problem is solved by the method of moving asymptotes. Two numerical examples and a practical conceptual design of linear motor rotor structure are systematically investigated to demonstrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.