Abstract

Seawater desalination process is analyzed in this paper as an option for reducing the groundwater usage of overexploited aquifers in irrigated agriculture. The proposed approach is based on a new superstructure formulated as a multiobjective mixed integer nonlinear programming model, where power requirements of the desalination process and agriculture activity are supplied by an integrated steam Rankine cycle fed of solar energy and fossil fuels. The multiobjective function includes the minimization of the groundwater consumption and the minimization of the total annual cost; this cost is divided into the capital cost which consists of the catchment area, desalination process, power cycle and pumps, as well as the operating costs for pumping, fossil fuels, groundwater and desalinated seawater. A case study for the state of Sonora in Mexico was considered to show the applicability of the proposed approach. Results show that the maximum saving for groundwater consumption is about 66% with the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.