Abstract

Highly pure Co nanocrystalline powders were prepared by high-energy ball milling under the condition that all operations on the powders were performed in the glovebox filled with highly purified argon gas. A series of annealing experiments at different temperatures were carried out to investigate grain growth in the milled powders. The as-milled and annealed microstructures were observed and analyzed with transmission electron microscopy (TEM), high-resolution TEM, high-resolution scanning electron microscopy, and x-ray diffraction methods. Characteristics of the incontinuous grain growth in the milled nanocrystalline powders were found. It is considered by the authors that the sharp increase in nanograin size in certain intermediate-temperature region is a result of accelerated grain growth promoted by the stored energy as a supplied driving force, and through a particular dominant mechanism of nanograin rotations in contrast to grain boundary migration in polycrystalline materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.