Abstract

We investigated the standard metabolic rate and liver mitochondria metabolism of the southern catfish when exposed to waterborne cadmium. Juvenile southern catfish were exposed to waterborne cadmium concentrations (0, 62.5, 125, 250 and 500 μg/L, respectively) for 8 weeks, and the final body mass, the standard metabolic rate, the state III respiration rate, the activity of cytochrome C oxidase (CCO) of liver mitochondria, and the hepatosomatic index (HSI) were determined. The results showed that the 62.5 μg/L, 125 μg/L, and 250 μg/L experiment groups had a significantly higher standard metabolic rate than that of the control group. Standard metabolic rate in the 500 μg/L experiment group did not differ from the control group. State III respiration rate of liver mitochondria decreased with an increase in cadmium concentration. The 125 μg/L, 250 μg/L, and 500 μg/L experiment groups had a significantly lower state III respiration rate than that of the control group. The activity of CCO in the 500 μg/L experiment group was significantly lower than that of the control group. These results suggest that at low cadmium concentrations, the southern catfish could continuously improve the standard metabolism to provide extra energy in response to the cadmium stress. Cadmium exposures caused damage to the structure and function of liver mitochondria and decreased the activity of mitochondria enzymes, which results in a decrease in the energy of the liver metabolism. The adjustment of the metabolism of liver mitochondria in southern catfish was inconsistent with the adjustment of individual standard metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.