Abstract

In the present study, a robust Incompressible smoothed particle hydrodynamics (ISPH) method, based on an advanced Smoothed particle hydrodynamics (SPH) discretization, is introduced to study the effects of the non-Newtonian power-law index and stirrer frequency on fluid mixing in an active micromixer that uses an oscillating stir-bar. Two Reynolds numbers (20 and 72) are considered, and more than 70 SPH simulations are carried out, in order to investigate the effects of the power-law index and stirrer frequency on fluid mixing. The results show that this active micromixer is more efficient at the lower power-law indices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call