Abstract
This paper rigorously justifies the incompressible limit of strong solutions to isentropic compressible magnetohydrodynamic equations with ill-prepared initial data in a three-dimensional bounded domain as the Mach number goes to zero. In both cases of viscous and inviscid magnetic fields, we establish a new energy functional with weight to obtain uniform estimates for strong solutions with respect to the Mach number. Then, we prove the weak convergence of a velocity and the strong convergence of a magnetic field and the divergence-free component of a velocity field, which yields the corresponding incompressible limit.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.