Abstract
In this paper we discuss the incompressible limit for multicomponent fluids in the isothermal ideal case. Both a direct limit-passage in the equation of state and the low Mach-number limit in rescaled PDEs are investigated. Using the relative energy inequality, we obtain convergence results for the densities and the velocity-field under the condition that the incompressible model possesses a sufficiently smooth solution, which is granted at least for a short time. Moreover, in comparison to single-component flows, uniform estimates and the convergence of the pressure are needed in the multicomponent case because the incompressible velocity field is not divergence-free. We show that certain constellations of the mobility tensor allow to control gradients of the entropic variables and yield the convergence of the pressure in L1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.