Abstract

In this paper we discuss the incompressible limit for multicomponent fluids in the isothermal ideal case. Both a direct limit-passage in the equation of state and the low Mach-number limit in rescaled PDEs are investigated. Using the relative energy inequality, we obtain convergence results for the densities and the velocity-field under the condition that the incompressible model possesses a sufficiently smooth solution, which is granted at least for a short time. Moreover, in comparison to single-component flows, uniform estimates and the convergence of the pressure are needed in the multicomponent case because the incompressible velocity field is not divergence-free. We show that certain constellations of the mobility tensor allow to control gradients of the entropic variables and yield the convergence of the pressure in L1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call