Abstract

We consider qubits in a linear arrangement coupled to a bosonic field which acts as a quantum heat bath and causes decoherence. By taking the spatial separation of the qubits explicitly into account, the reduced qubit dynamics acquires an additional non-Markovian element. We investigate the exact time evolution of an entangled many-qubit W state, which for vanishing qubit separation remains robust under pure dephasing. For finite separation, by contrast, the dynamics is no longer decoherence-free. On the other hand, spatial noise correlations may prevent complete dephasing. While a standard Bloch-Redfield master equation fails to describe this behavior even qualitatively, we propose instead a widely applicable causal master equation. Here we employ it to identify and characterize decoherence-poor subspaces. Consequences for quantum error correction are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call