Abstract
Multiple kernel alignment (MKA) maximization criterion has been widely applied into multiple kernel clustering (MKC) and many variants have been recently developed. Though demonstrating superior clustering performance in various applications, it is observed that none of them can effectively handle incomplete MKC, where parts or all of the pre-specified base kernel matrices are incomplete. To address this issue, we propose to integrate the imputation of incomplete kernel matrices and MKA maximization for clustering into a unified learning framework. The clustering of MKA maximization guides the imputation of incomplete kernel elements, and the completed kernel matrices are in turn combined to conduct the subsequent MKC. These two procedures are alternately performed until convergence. By this way, the imputation and MKC processes are seamlessly connected, with the aim to achieve better clustering performance. Besides theoretically analyzing the clustering generalization error bound, we empirically evaluate the clustering performance on several multiple kernel learning (MKL) benchmark datasets, and the results indicate the superiority of our algorithm over existing state-of-the-art counterparts. Our codes and data are publicly available at https://xinwangliu.github.io/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.