Abstract

The production of streptokinase in a batch fermentation has been analysed for the role of incomplete macromixing of the broth. The analysis is based on a kinetic model exhibiting inhibition by the substrate and a primary metabolite (lactic acid), and a mixing model comprising two continuous flow reactors (CFRs) with closed-loop recycle. The inoculum is introduced into one region (one CFR) and the mixing process determines its distribution, growth and reactivity. By varying the dilution rates of the CFRs, any degree of macromixing can be simulated. For dilution rates larger than 1.0 h−1 almost complete macromixing is achieved, for which an analogy has been drawn with micromixing. Increasing the volume of the inoculated region relative to the noninoculated region improves the maximum attainable activity of streptokinase and shortens the time for this. In such a situation an imperfectly mixed bioreactor is superior to a perfectly mixed one, implying that good productivity requires a large inoculated region and incomplete macromixing. These inferences are supported by earlier studies of fluid mixing and relaxation times in bioreactors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.