Abstract
Abstract In numerical solving boundary value problems for parabolic equations, two- or three-level implicit schemes are in common use. Their computational implementation is based on solving a discrete elliptic problem at a new time level. For this purpose, various iterative methods are applied to multidimensional problems evaluating an approximate solution with some error. It is necessary to ensure that these errors do not violate the stability of the approximate solution, i.e., the approximate solution must converge to the exact one. In the present paper, these questions are investigated in numerical solving a Cauchy problem for a linear evolutionary equation of first order, which is considered in a finite-dimensional Hilbert space. The study is based on the general theory of stability (well-posedness) of operator-difference schemes developed by Samarskii. The iterative methods used in the study are considered from the same general positions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.