Abstract
Water quality inspection (WQI) is one of the primary ways to ensure the safe utilization of water resources, and complicated data modeling, fusion and analysis play a significant role in seeking the resource with the best water quality. Nevertheless, the challenges of missing data, relatively large differences in decision results and bounded rationality owned by decision-makers (DMs) in terms of WQI still exist nowadays. Thus, from the aspect of stable and behavioral decision-making in multi-granularity incomplete intuitionistic fuzzy information systems (MG-IIFISs), the paper investigates a comprehensive multi-attribute group decision-making (MAGDM) approach for the application of WQI. First, the concept of MG-IIFISs is built by modeling MAGDM problems with intuitionistic fuzzy numbers (IFNs), then a new transformation scheme is constructed for transforming MG-IIFISs into multi-granularity intuitionistic fuzzy information systems (MG-IFISs) based on the similarity principle. Second, three types of multigranulation intuitionistic fuzzy probabilistic rough sets (MG IF PRSs) are developed by referring to the MULTIMOORA (Multi-Objective Optimization by Ratio Analysis plus the full MULTIplicative form) method. Afterwards, attribute weights are objectively calculated based on the best-worst method (BWM), and a new stable and behavioral MAGDM approach is constructed by means of the TODIM (an acronym in Portuguese for interactive multi-criteria decision-making) method. At last, a case study in the setting of WQI is conducted with the support of a UCI data set, and sensitivity analysis, comparative analysis and experimental analysis are investigated to display the validity of the proposed approach. In general, the proposed approach improves the stability of decision results via MULTIMOORA and BWM, and also fully considers the bounded rationality of DMs’ psychological behaviors from the aspect of the TODIM method, which has certain advantages in the community of MAGDM studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.