Abstract

We propose an incomplete Cholesky factorization for the solution of large-scale trust region subproblems and positive definite systems of linear equations. This factorization depends on a parameter p that specifies the amount of additional memory (in multiples of n, the dimension of the problem) that is available; there is no need to specify a drop tolerance. Our numerical results show that the number of conjugate gradient iterations and the computing time are reduced dramatically for small values of p. We also show that in contrast with drop tolerance strategies, the new approach is more stable in terms of number of iterations and memory requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.