Abstract
Carbon trapping at dislocations and carbide precipitation in martensite could significantly reduce the amount of carbon partitioning into austenite, e.g. incomplete carbon partitioning phenomenon, which would alter austenite decomposition behavior and austenite stability during the Quenching and Partitioning (Q&P) process. In this study, an integrated model is developed to clarify the mechanism of incomplete carbon partitioning and quantify its effects on austenite stabilization in the low-alloy medium-carbon Fe–C–Mn–Si steels. The fraction of carbon consumed by Cottrell atmospheres around dislocations is described using a semi-empiric equation. Then, the kinetic competition among carbide precipitation, carbon partitioning and austenite decomposition during the partitioning step is simulated by coupling the Deschamps–Bréchet model and quenching and partitioning-local equilibrium (QP-LE) model. It is found that transition carbide precipitation in martensite and carbon partitioning into austenite are kinetically coupled at the very early stage of the partitioning step and subsequently promotes austenite decomposition. Taking the synergy effects of incomplete carbon partitioning and austenite decomposition into account, our model is capable of predicting the evolution of volume fraction of austenite and its carbon content during partitioning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.