Abstract
Standard Galerkin finite element methods or finite difference methods for singular perturbation problems lead to strongly unsymmetric matrices, which furthermore are in general notM-matrices. Accordingly, preconditioned iterative methods such as preconditioned (generalized) conjugate gradient methods, which have turned out to be very successful for symmetric and positive definite problems, can fail to converge or require an excessive number of iterations for singular perturbation problems. This is not so much due to the asymmetry, as it is to the fact that the spectrum can have both eigenvalues with positive and negative real parts, or eigenvalues with arbitrary small positive real parts and nonnegligible imaginary parts. This will be the case for a standard Galerkin method, unless the meshparameterh is chosen excessively small. There exist other discretization methods, however, for which the corresponding bilinear form is coercive, whence its finite element matrix has only eigenvalues with positive real parts; in fact, the real parts are positive uniformly in the singular perturbation parameter. In the present paper we examine the streamline diffusion finite element method in this respect. It is found that incomplete block-matrix factorization methods, both on classical form and on an inverse-free (vectorizable) form, coupled with a general least squares conjugate gradient method, can work exceptionally well on this type of problem. The number of iterations is sometimes significantly smaller than for the corresponding almost symmetric problem where the velocity field is close to zero or the singular perturbation parameter e=1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.