Abstract

For every absolutely continuous contraction T with spectrum on the unit circle, we exhibit an H ∞ {H^\infty } function h and a sequence of operators T n {T_n} which are unitarily equivalent to T and differ from T by a sequence of compact operators converging to 0 in norm such that h ( T n ) h({T_n}) is never a compact perturbation of h ( T ) h(T) . When T is diagonal, it can also be arranged that T − T n T - {T_n} is trace class, and T n {T_n} commutes with T. Pour toute contraction absolument continue T dont le spectre rencontre le cercle unité, il existe une fonction h de H ∞ {H^\infty } et une suite T n {T_n} d’opérateurs unitairement equivalents à T telle que T − T n T - {T_n} soit compact et convergent en norme vers 0, mais h ( T n ) − h ( T ) h({T_n}) - h(T) soit non compact pour tout n. Dans le cas où T est diagonal, la suite T n {T_n} vérifie en plus T − T n T - {T_n} est un opérateur à trace, et T n {T_n} commute avec T.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.